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Topological CFT and its perturbations
Q*=0 [Q, b] = T (energy-momentum tensor) Hotivations
After perturbation: Q@ — Q9¢f

QUIV=QV+> my(e...0,V)

n>2

Perturbation types:
1) S+ / o ({mn}, Q) satisfy Lo — algebra relations
b3

2) S —|—/ o™ ({mn}, Q) satisfy As — algebra relations
o

2
Condition Q4" =0 «—
Generalized Maurer-Cartan equation

QY + my(d, d) + m3(d,d, d) 4 --- =0
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In particular:
CFT and BRST (semi-infinite cohomology) complex

Q" =0 for marginal deformations <= 3(®) = 0, i.e. conformal
invariance
For o-models of String Theory:

B(®) = 0 <= Einstein,Yang-Mills equations+ stringy corrections.

Finding explicit form of {m,} is important for understanding of the
perturbation theory in two dimensions.
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Motivations

Homotopy algebras related to TVOA:

J(z) = Zj,,zf"*l, b(z) = Z bz Q= o

[Q,b(2)] = L(2), Q=0

N(z) = Z Noz™ "' No provides grading
Lian-Zuckerman (1993):

(A, B) = ResZ@, {A, B} = Res;b_1A(z)B

generate Gerstenhaber algebra on cohomology of Q.

Conjecture: (Q,(,),{,}) extends to G..-algebra on the space of TVOA.

Proof: Kimura, Voronov, Zuckerman: g-alg/9602009
Huang, Zhao: math.QA/990314
Galves, Gorhonnov, Tonks: math.QA /0611231

Galves-Carvillo, Tonks, Vallette:  arXiv:0907.2246
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Maurer-Cartan equation for the homotopy Lie algebra from LZ @ LZ
algebra reproduces Einstein equations and its symmetries up to the
second order.

A. Losev, A. Marshakov, AMZ, Phys.Lett.B 633(2006) 375,
AMZ, Nucl. Phys. B794 (2008) 381; arXiv:0708.0682,
JHEP12(2007)098, arXiv:0708.0955
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No proof of uniqueness, no explicit expressions for the higher operations.

Maurer-Cartan equation for the homotopy Lie algebra from LZ @ LZ
algebra reproduces Einstein equations and its symmetries up to the
second order.

A. Losev, A. Marshakov, AMZ, Phys.Lett.B 633(2006) 375,
AMZ, Nucl. Phys. B794 (2008) 381; arXiv:0708.0682,
JHEP12(2007)098, arXiv:0708.0955

Maurer-Cartan equation for homotopy associative algebra of LZ
reproduces Yang-Mills equation and its gauge symmetry.

AMZ, JHEP03(2010)056, arXiv:0812.1840, Comm. Math. Phys. 303
(2011) 331-359, arXiv:0910.3652.
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Conjecture: All the extensions of A, Loo Lian-Zuckerman homotopy
algebras are quasi-isomorphic. Motivations

The corresponding " B-functions” are the same modulo " field
redefinitions”

S — b+ (P, D)+ az(P, P, P) + ...

{an} generate Ass/Loc morpism.

Problem: How to find explicit expressions for higher operations of LZ
homotopy algebra?

In this talk: outline of explicit construction of A, algebra operations
(based on AMZ, arXiv:1104.5038, Int. J. Math, in press)
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Q=0

Qma(a, b) = my(Qa, b) + (—1)"* my(a, Qb)
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Acc-algebra Z=graded space V with differential Q and multilinear
operations {m;}, (m1 = Q) of degree 2 — i.
Relations: Acc-algebras
Q=0
Qma(a, b) = ma(Qa, b) + (~1)"ma(a, Qb)
m2(m2(a7 b)v C) - m2(av m2(b7 C)) = Qm?’(av ba C) +
m3(Qaz b7 C) + (_1)‘a‘m3(av Qb7 C) + (_1)‘a‘+‘b‘m3(av b7 QC)

In general, """ (=1)'"M; o Ma_is1 = 0 on V®" where

k 2
Mi =3 iieticn 19" @ m®1%
Aoo-algebra is algebra over the operad, generated by Stasheff polytopes
(associahedra) Ki:

° K4:O

Each face of codimension one is K, X K;, n=r + s — 1. The inclusion
oj : K X Ks — Ki+s—1 makes it a non-symmetric operad.
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Let V be topological VOA.
We consider all vertex operators on R.

Regularized LZ operation: (A1, A2):(t) = A1(t + €)Ax(t)
Proposition Let ¢ > 0,t > €. n
A oo -algebra

A(t +)B(t) — (—1)A1BIB(t — e)A(t) =
Qm.(A, B)(t) + m-(QA, B)(t) + (-1)"'m.(A, QB)(t),

m:(A, B)(t) = i [b-1, A(t' +t +&)B(t' + t)]dt’

This is the regularized form of homotopy commutativity condition.
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Let V be topological VOA.
We consider all vertex operators on R.

Regularized LZ operation: (A1, A2):(t) = A1(t + €)Ax(t)
Proposition Let ¢ > 0,t > €. n
A oo -algebra

A(t +)B(t) — (—1)A1BIB(t — e)A(t) =
Qm.(A, B)(t) + m-(QA, B)(t) + (-1)"'m.(A, QB)(t),

0
m:(A,B)(t) = [ [b-1,A(t +t+e)B(t + t)]dt’
This is the regularized form of homotopy commutativity condition.

What about associativity?
Alp + 1)B(p — a1 + )C(t) — Ap + £)Blaz + 1) C(t) =
p—oq
A(t+p)/ [L_1, B(t' + t)]dt' C(t) =

Qp.ay.05 (A, B, C)(£) + My.ay,0r(QA, B, C)(t) +
(1)) oy 0 (A, QB, O)(8) + (1) AHIB Y (A, B, QC)(t)
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((A, B)a; €)o(t) = (A, (B, C)az)(t) =
Qnp.ay,02(A, B, C)(t) + p,01,00(QA, B, C)(t) +
(=) 1p.01.00(A, @B, C)(8) + (=1) ¥y 0, 0a(A, B, QO)(E),
p—ax oo -algebra
Np.ar,a2(A; B, C)(t) = (—1)" / A(t + p)[b-1, B)(t' + t)C(t)dt’

a2

+(may (A, B), C)p(2)-
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(4,8, €)1 = () [
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VAt + p)lbos, BI(E + £)C()dY

Higher commutativity and associativity relations?

Framework:
Introduction of nonlocal operators
generated by 2 types of operations:

I © AB— A(t+e)B(t)

1 A1,...,A,,—>/Al(t1+t).,,An(tn+t)dtl/\---/\dt,,
P

where PelA,={(t1,...,tn) |0< tn < th1--- < t1 < p}

These operators are weakly defined (i.e. under the correlator).
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M LZ Aoo-algebra
Np.er.oo(A, B, C)(t) + (_1)\/-\\\BH\AHCH\C\\B\nipﬁa%isl(c’ B, A)(t) =
(me, (A, B), C)(t) + (1) ANEHAICHICNE (m_ (€, B), A)—(2) +
(=11 m, (B, A)—z1, C)(£) — m,(A, (B, C)=,)(t) +
QMp,er,e,(A, B, C)(t) — Mp,e,0,(QA, B, C)(t)

where t > p >> ¢13 and

ﬁ’Pvflvfz(A7 B, C)(t) =
p—e1

[bfl,/_0 (1) A(s +p+ t)/ [b_1, B(t' + s + t)]dt' C(t + s)]ds].
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Outline
pp(A1, Az, As, Ag)(t) = Motivations

Ao -algebras
(_1)|A2|A1(p + t) / [b—17 A2](X + t)[b—ly Aa(y = t)]dX VAN dyA4(t). LZ Ao -algebra
P

Final remarks/Open
questions

R 3 p-g+E p-a; P X

Figure: Pentagon P

p>>e2,00>e1,00,§ >0
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pp(A1, Az, A3, Ad)(t) = pp(Ar, Az, As, As)(t) +
nP»QZ»El(mal(Alv A2)7 As, A4)(t) + (ma2=a1,§(A17 Az, A3)7 A4)p LZ Ao -algebra

Proposition Operations (-,-), n(:,-,-), p(:, -, -, -) satisfy the following
relation:
(_1)‘A1‘(A17 Ney 6,61 (A27A37A4))p - npva1»52(A17A27 (A37A4)€1) +
Np,az,e2(A1, (A2, As)e, Aa)(t) — Np,as.e (A1, A2)ay s As, As)(t) +
(Nag,a1,6(A1, A2, As), Aa)p(t) =
QPP(A17A27A37A4)(t) - pP(QA13A23A3aA4)(t) -
(1) pp (A1, QAz, As, As) — (—1) 1% pp Ay, Ap, QAs, Ad)(t) —
(— 1) o (A1, A, As, QA)(2)
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Higher homotopy: Anton Zeitlin
pp(A1, Az, A3, Ad)(t) = pp(Ar, Az, As, As)(t) +
nP»QZ»El(mal(Alv A2)7 As, A4)(t) + (ma2=a1,§(Alv Az, A3)7 A4)p LZ Ao -algebra

Proposition Operations (-,-), n(:,-,-), p(:, -, -, -) satisfy the following
relation:
(_1)‘A1‘(A17 Ney 6,61 (A27A37A4))p - npva1»52(A17A27 (A37A4)€1) +
Np,az,e2(A1, (A2, As)e, Aa)(t) — Np,as.e (A1, A2)ay s As, As)(t) +
(Nag,a1,6(A1, A2, As), Aa)p(t) =
QPP(A17A27A37A4)(t) - pP(QA13A2aA3aA4)(t) -
(1) pp (A1, QAz, As, As) — (—1) 1% pp Ay, Ap, QAs, Ad)(t) —
(— 1) o (A1, A, As, QA)(2)

This is a relation from A algebra modulo the dependence on the
parameters.
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-pP
0
fhprelv62 (A7 87 C)(t) = [bflv n;;,el,q (A7 Bv C)](t + t/)]dt/
—p

LZ Aoo-algebra
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mo(A B = [ (b1, (A B (e + et

—p

Anton Zeitlin

0
’779151-,52 (A7 87 C)(t) = [bflv n;;,el,q (A7 Bv C)](t + t/)]dt/

LZ Aoo-algebra
Forn >3
pK"(Al,AQ,....,A )(£) = w0 (AL, Az, o An)(1),
+Z/~’L€ Ds € 7 n s+1(A17A27"'7A5)7A5+17“~7A")7 (1)

Conjecture:

where
M/g’Kn(AhAL s An)(t) =
(n=3)(n—2) = -
(1) (L) DA+ etz 4 (1 )

[bfl,Az](té aF t)

Kn

VORI (AL Az, ..y An)(E) =

[b—1, An—1](th_1 + t)dt; A ... A dt,_1 An(t),
0
[b_1, 1/ " (AL, Asy ooy An)(t + t)]dt!
-P
K, — (n-2)-dimensional Stasheff polytope
D, D; — some Stasheff polytopes of dimensions s — 2, k — 2 which
belong to the boundary of K.
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Relation to the compactification of the real moduli space Mo »(R)?



Final remarks/Open questions Homotopy lations

Anton Zeitlin

Final remarks/Open

1) As/Co structure of conformal field theory via geometry of questions
associahedra.
Complete proof? One should use Shneider-Sternberg procedure in
order to cut the associahedron from the simplex.
Relation to the compactification of the real moduli space Mo »(R)?
2) Lo structure for " full” CFT?
Find explicit expressions for operations.



F|na| remarkS/Open questions Homotopy relations

1)

for TVA

Anton Zeitlin

Final remarks/Open

Ao/ Cs structure of conformal field theory via geometry of questions
associahedra.

Complete proof? One should use Shneider-Sternberg procedure in

order to cut the associahedron from the simplex.

Relation to the compactification of the real moduli space Mo »(R)?

L~ structure for "full” CFT?

Find explicit expressions for operations.

Polylogarithms emerge from iterated integrals. Homotopical
meaning of polylogarithmic indentities?
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