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Abstract

The integrable structure of the two dimensional superconformal field
theory is considered. The classical counterpart of our constructions is
based on the dosp(1|2) super-KdV hierarchy. The quantum version of the
monodromy matrix associated with the linear problem for the correspond-
ing L-operator is introduced. Using the explicit form of the irreducible
representations of dosp

q
(1|2), the so-called “fusion relations” for the trans-

fer matrices (that is, the traces of the corresponding monodromy matri-
ces) considered in different representations of dosp

q
(1|2) are obtained. The

possible integrable perturbations of the model (primary operators, com-
muting with integrals of motion) are classified and the relation with the
supersymmetric dosp(1|2) Toda field theory is discussed.

1 Introduction

Conformal field theory (CFT) provides effective tools to classify the fields in the
theory we study and to compute their correlation functions. Perturbartion leads
the system out of the critical point and breaks the conformal invariance. But
special perturbations, called ”integrable” still preserve an infinite-dimensional
abelian algebra of conserved charges, thus leading to an integrable theory.

The authors of [1], [2] showed that in this case the problem could be studied
from a point of view of continuous field theory version of the quantum inverse
scattering method (QISM) [3],[4]. The proposition is the following: at first, to
use CFT symmetries for construction of QISM structures at the scale invari-
ant fixed point and then to study the integrable perturbed model by obtained
QISM tools. Our object of study is a model based on the superconformal sym-
metry (see e.g. [5],[6]). The superconformal field theory has been applied to
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the physics of 2D disordered systems, to the study of lattice models (the tri-
critical Ising model) and to the superstring physics. We build basic structures
of QISM: quantum monodromy matrices, RTT-relation and fusion relations for
the transfer matrices, using underlying superconformal symmetry.

The ôsp(1|2) supersymmetric Korteweg - de Vries theory (super-KdV) [8]-
[11] is used as a classical limit of our quantum system. Due to the Drinfeld-
Sokolov reduction of the ôsp(1|2) affine superalgebra, Miura transformation
and Poisson brackets are introduced. Then the monodromy matrix is con-
structed. The associated auxiliary L-matrix satisfies the r-matrix quadratic
Poisson bracket relation and plays a crucial role in the following.

After this necessary preparation, we move to the quantum theory (Sec. 3).
The quantum Miura transformation is realized by the free field representation
of the superconformal algebra [5],[6]. Then the super-Virasoro module is con-
sidered, where the quantum versions of integrals of motion (IM) act. Vertex
operators are also introduced, to build quantum monodromy matrix.

The algebraic structure corresponding to the quantum case, coincides with
the quantum superalgebra ôspq(1|2). We construct the finite dimensional irre-
ducible representations of this quantum Lie superalgebra (Sec. 4). It appears,
that in quantum monodromy matrix (in comparison with the classical case) one
term is missing in the P-exponent. The quantum L-matrix satisfies the so-called
RTT-relation, giving the integrability condition in the quantum case. Consider-
ing monodromy matrices in the obtained ôspq(1|2) representations, we get the
functional relations (“fusion relations”) for their traces – “transfer matrices”.
When the deformation parameter is rational (the case of CFT minimal models),
these fusion relations become the closed system of equations, which, due to the
conjecture of [1] can be used to find the full set of eigenvalues of transfer matri-
ces. Also, we suppose that they could be transformed to the Thermodynamic
Bethe Ansatz equations [7].

Finally, we discuss integrable perturbations of the model and the relation
with the supersymmetric Toda field theory.

2 A review of classical super-KdV theory

The classical limit of constructions of papers [1], [2] leads to the Drinfeld-Sokolov

KdV hierarchies related to the corresponding affine Lie algebras A
(1)
1 and A

(2)
2 .

Our quantum model gives in classical limit the super-KdV hierarchy [8]-[11]
related to B(0, 1)(1) (or ôsp(1|2)) affine Lie superalgebra. The supermatrix L-
operator, corresponding to super-KdV theory is the following one:

LF = Du,θ − Du,θΨh − (iv+

√
λ − θλX−), (1)

where Du,θ = ∂θ + θ∂u is a superderivative, variable u lies on a cylinder of
circumference 2π, θ is a Grassmann variable, Ψ(u, θ) = φ(u) − iθξ(u)/

√
2 is a

bosonic superfield; h, v+, v−, X−, X+ are generators of osp(1|2) (for more infor-
mation see [12], [13]):

[h, X±] = ±2X±, [h, v±] = ±v±, [X+, X−] = h, (2)
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[v±, v±] = ±2X±, [v+, v−] = −h, [X±, v∓] = v±, [X±, v±] = 0.

Here [,] means supercommutator: [a, b] = ab− (−1)p(a)p(b)ba and the parity p is
defined as follows: p(v±) = 1, p(X±) = 0, p(h) = 0. The “fermionic” operator
LF considered together with a linear problem LF χ(u, θ) = 0 is equivalent to
the “bosonic” one:

LB = ∂u − φ′(u)h −
√

λ/2ξ(u)v+ − λ(X+ + X−). (3)

The fields φ, ξ satisfy the following boundary conditions:

φ(u + 2π) = φ(u) + 2πip, ξ(u + 2π) = ±ξ(u), (4)

where “+” corresponds to the so-called Ramond (R) sector of the model and “–”
to the Neveu-Schwarz (NS) one. The Poisson brackets, given by the Drinfeld-
Sokolov construction are the following:

{ξ(u), ξ(v)} = −2δ(u − v), {φ(u), φ(v)} =
1

2
ε(u − v). (5)

The L-operators (1), (3) correspond to the super-modified KdV, they are written
in the Miura form. Making a gauge transformation to proceed to the super-KdV
L-operator one obtains two fields:

U(u) = −φ′′(u) − φ′2(u) − 1

2
ξ(u)ξ′(u), α(u) = ξ′(u) + ξ(u)φ′(u), (6)

which generate the superconformal algebra under the Poisson brackets:

{U(u), U(v)} = δ′′′(u − v) + 2U ′(u)δ(u − v) + 4U(u)δ′(u − v), (7)

{U(u), α(v)} = 3α(u)δ′(u − v) + α′(u)δ(u − v),

{α(u), α(v)} = 2δ′′(u − v) + 2U(u)δ(u− v).

These brackets describe the second Hamiltonian structure of the super-KdV hi-
erarchy. One can obtain an evolution equation by taking one of the correspond-
ing infinite set of local IM (they could be obtained by expanding log(t1(λ)),
where t1(λ) is the supertrace of the monodromy matrix, see below):

I
(cl)
1 =

∫
U(u)du, I

(cl)
3 =

∫ (U2(u)

2
+ α(u)α′(u)

)
du, (8)

I
(cl)
5 =

∫ (
(U ′)2(u) − 2U3(u) + 8α′(u)α′′(u) + 12α′(u)α(u)U(u)

)
du,

. . .

These conservation laws form an involutive set under the Poisson brackets:
{I(cl)

2k−1, I
(cl)
2l−1} = 0. From the I

(cl)
3 conservation law one obtains the super-KdV

equation for the Grassmann algebra valued functions [8]-[10]:

Ut = −Uuuu − 6UUu − 6ααuu, αt = −4αuuu − 6Uαu − 3Uuα. (9)
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Now let’s consider the “bosonic” linear problem πs(LB)χ(u) = 0, where πs

means irreducible representation of osp(1|2) labeled by an integer s ≥ 0 [12],[13].
We can write the solution of this problem in such a way:

χ(u) = πs(λ)

(
e−φ(u)hα0 P exp

∫ u

0

du′
(
ξ(u′)e−φ(u′)eα + e−2φ(u′)2e2

α (10)

+ e2φ(u′)eα0

))
χ0,

where P exp means P -ordered exponent, χ0 ∈ C2s+1 is a constant vector and
eα, eα0

, hα0
are the Chevalley generators of ôsp(1|2) (see [14]), which coincide in

the evaluation representations πs(λ) with
√

λ/2v+, λX−, −h correspondingly.
The associated monodromy matrix then has the form:

Ms(λ) = πs

(
e−2πiphα0 P exp

∫ 2π

0

du
(
ξ(u)e−φ(u)eα + e−2φ(u)2e2

α (11)

+ e2φ(u)eα0

))
.

Following [1] let’s introduce auxiliary matrices: πs(λ)(L) = Ls(λ) =
πs(λ)(eπiphα0 )Ms(λ). They satisfy Poisson bracket algebra [15]:

{Ls(λ) ⊗, Ls′(µ)} = [rss′ (λµ−1),Ls(λ) ⊗ Ls′(µ)], (12)

where rss′ (λµ−1) = πs(λ) ⊗ πs′ (µ)(r) is the classical trigonometric ôsp(1|2)
r-matrix [16] taken in the corresponding representations:

r(λµ−1) =
1

2

λµ−1 + λ−1µ

λµ−1 − λ−1µ
h ⊗ h + (13)

+
2

λµ−1 − λ−1µ
(X+ ⊗ X− + X− ⊗ X+)

+
1

(λµ−1 − λ−1µ)

(√
µ

λ
v+ ⊗ v− −

√
λ

µ
v− ⊗ v+

)
.

From the Poisson brackets for Ls(λ) one obtains that the traces of monodromy
matrices ts(λ) = strMs(λ) commute under the Poisson bracket: {ts(λ), ts′ (µ)} =
0. If one expands log(t1(λ)) in the λ−1 power series, one can see that the coef-
ficients in this expansion are the local IM, as we mentioned earlier.

3 Free field representation of Superconformal

algebra and Vertex operators

To quantize the introduced classical quantities, we start from a quantum version
of the Miura transformation (6), the so-called free field representation of the
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superconformal algebra [5]:

−β2T (u) = : φ′2(u) : +(1− β2/2)φ′′(u) +
1

2
: ξξ′(u) : +

εβ2

16
(14)

i1/2β2

√
2

G(u) = φ′ξ(u) + (1 − β2/2)ξ′(u),

where

φ(u) = iQ + iPu +
∑

n

a−n

n
einu, ξ(u) = i−1/2

∑

n

ξne−inu, (15)

[Q, P ] =
i

2
β2, [an, am] =

β2

2
nδn+m,0, {ξn, ξm} = β2δn+m,0.

Recall that there are two types of boundary conditions on ξ: ξ(u+2π) = ±ξ(u).
The sign “+” corresponds to the R sector,the case when ξ is integer modded,
the “–” sign corresponds to the NS sector and ξ is half-integer modded. The
variable ε in (13) is equal to zero in the R case and equal to 1 in the NS case.
One can expand T (u) and G(u) by modes in such a way: T (u) =

∑
n L−neinu−

ĉ
16 , G(u) =

∑
n G−neinu, where ĉ = 5 − 2(β2

2 + 2
β2 ) and Ln, Gm generate the

superconformal algebra:

[Ln, Lm] = (n − m)Ln+m +
ĉ

8
(n3 − n)δn,−m (16)

[Ln, Gm] = (
n

2
− m)Gm+n

[Gn, Gm] = 2Ln+m + δn,−m
ĉ

2
(n2 − 1/4).

In the classical limit c → −∞ (the same is β2 → 0) the following substitution:
T (u) → − ĉ

4U(u), G(u) → − ĉ
2
√

2i
α(u), [, ] → 4π

iĉ {, } reduce the above algebra to

the Poisson bracket algebra of super-KdV theory.
Let now Fp be the highest weight module over the oscillator algebra of an, ξm

with the highest weight vector (ground state) |p〉 determined by the eigenvalue
of P and nilpotency condition of the action of the positive modes:

P |p〉 = p|p〉, an|p〉 = 0, ξm|p〉 = 0 n, m > 0. (17)

In the case of the R sector the highest weight becomes doubly degenerate due to
the presence of zero mode ξ0. So, there are two ground states |p, +〉 and |p,−〉:
|p, +〉 = ξ0|p,−〉. Using the above free field representation of the superconformal
algebra one can obtain that for generic ĉ and p, Fp is isomorphic to the super-
Virasoro module with the highest weight vector |p〉:

L0|p〉 = ∆NS |p〉, ∆NS =

(
p

β

)2

+
ĉ − 1

16
(18)
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in the NS sector and module with two highest weight vectors in the Ramond
case:

L0|p,±〉 = ∆R|p,±〉, ∆R =

(
p

β

)2

+
ĉ

16
, |p, +〉 =

β2

√
2p

G0|p,−〉. (19)

The space Fp, now considered as super-Virasoro module, splits in the sum of

finite-dimensional subspaces, determined by the value of L0: Fp = ⊕∞
k=0F

(k)
p ,

L0F
(k)
p = (∆+k)F

(k)
p . The quantum versions of local integrals of motion should

act invariantly on the subspaces F
(k)
p . Thus, the diagonalization of IM reduces

(in a given subspace F
(k)
p ) to the finite purely algebraic problem, which however

rapidly become very complex for large k. It should be noted also that in the
case of the Ramond sector G0 does not commute with IM (even classically), so
IM mix |p, +〉 and |p,−〉.
At the end of this section we introduce another useful notion – vertex operator.

We need two types of them: V
(a)
B =

∫
dθθ : eaΦ : (”bosonic”) and V

(b)
F =∫

dθ : ebΦ : (“fermionic”), where Φ(u, θ) = φ(u) − θξ(u) is a superfield. Thus,

V
(a)
B =: eaφ :, V

(b)
F = −bξ : ebφ : and normal ordering here means that :

ecφ(u) := exp
(
c
∑∞

n=1
a−n

n einu
)

exp
(
ci(Q + Pu)

)
exp

(
− c

∑∞
n=1

an

n e−inu
)
.

4 Quantum Monodromy Matrix and Fusion Re-

lations

In this section we will construct the quantum versions of monodromy matrices,
operators Ls and ts.
The classical monodromy matrix is based on the ôsp(1|2) affine Lie algebra.
In the quantum case the underlying algebra is quantum ôspq(1|2) [14] with

q = eiπβ2

and generators, corresponding to even root α0 and odd root α:

[hγ , hγ′ ] = 0 (γ, γ′ = α, d, α0), [eβ, eβ′ ] = δβ,β′ [hβ ] (β, β′ = α, α0),

[hd, e±α0
] = ±e±α0

, [hd, e±α] = 0, [hα0
, e±α0

] = 2e±α0
, (20)

[hα0
, e±α] = ∓e∓α, [hα, e±α] = ±1

2
e±α, [hα, e±α0

] = ∓eα0
,

[[e±α, e±α0
]q , e±α0

]q = 0, [e±α, [e±α, [e±α[e±α, [e±α, e±α0
]q ]q ]q]q ]q = 0.

Here [, ]q is the super q-commutator: [ea, eb] = eaeb − q(a,b)(−1)p(a)p(b)ebea

and parity p is defined as follows: p(hα0
) = 0, p(hα) = 0, p(e±α0

) =

0, p(e±α) = 1. Also, as usual, [hβ ] = qhβ −q−hβ

q−q−1 . The finite dimensional

representations π
(q)
s (λ) of ôspq(1|2) can be characterized by integer number s

and have the following explicit form:

hα0
|j, m〉 = 2m|j, m〉, (21)

eα0
|j, m〉 = λ

√
[j − m][j + m + 1]|j, m + 1〉,
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e−α0
|j, m〉 = λ−1

√
[j + m][j − m + 1]|j, m − 1〉,

eα|j, m〉 =
√

λ((−1)−2j
√

α(j)[j − m + 1]|j + 1/2, m− 1/2〉
+
√

α(j − 1/2)[j + m]|j − 1/2, m− 1/2〉),
e−α|j, m〉 =

√
λ
−1

(−
√

α(j)[j + m + 1]|j + 1/2, m + 1/2〉
− (−1)2j

√
α(j − 1/2)[j − m]|j − 1/2, m + 1/2〉),

hα0
= −2hα , hd =

1

2
λ

d

dλ
+

1

4
hα0

,

where j = 0, 1/2, ..., s/2, m = −j,−j + 1..., j. The normalization coefficients

α(j) =
[j + 1][j + 1/2][1/4]

[2j + 2][2j + 1][1/2]

(
(−1)s−2j+1 [s + 3/2]

[s/2 + 3/4]
+

[j + 3/2]

[j/2 + 3/4]

)

(22)

are the solution of the recurrence relation:

α(j)
[2j + 2]

[j + 1]
+ α(j − 1/2)

[2j]

[j]
= 1, α(s/2) = 0. (23)

It should be noted that if we take classical limit q → 1 then it is not hard to
calculate that α(s/2−k) = 0, if k < s/2 is a nonegative integer and α(s/2−k) =
1/2, if k < s/2 is nonegative half-integer. Using this fact one can obtain that
this representation in the classical limit appears to be a direct sum of finite

dimensional irreducible representations of ôsp(1|2): π
(1)
s (λ) = ⊕[s/2]

k=0 πs−2k(λ).
In this sum k runs through integer and half-integer numbers. One can notice
that the structure of irreducible finite dimensional representations of ôspq(1|2)

is similar to those of (A
(2)
2 )q [2]. This is the consequence of the coincidence of

their Cartan matrices.
After these preparations we are ready to introduce the quantum analogue

of Ls operators:

L
(q)
s = π(q)

s (λ)(L(q)) = (24)

π(q)
s (λ)

(
e−iπPhα0 P exp

(∫ 2π

0

du
(

: e2φ(u) : eα0
+ ξ(u) : e−φ(u) : eα

)))
.

One can see that the term e−2φ(u)2e2
α is missing in the P-exponent in comparison

with the classical case (11). This is the general result for superalgebras and we
will return to this in [17]. Analyzing the singularity properties of the integrands

in P-exponent of L
(q)
s (λ) one can find that the integrals are convergent for

−∞ < ĉ < 0 and need regularization for a wider region.
Now let’s prove that in the classical limit L

(q) will coincide with L. First
let’s analyse the products of the operators we have in the P-exponent. The
product of the two fermion operators can be written in such a way:

ξ(u)ξ(u′) =: ξ(u)ξ(u′) : −iβ2 e−κ i
2
(u−u′)

e
i
2
(u−u′) − e−

i
2
(u−u′)

. (25)
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where κ is equal to zero in the NS sector and equal to 1 in the R sector Also,
for vertex operators we have:

: eaφ(u) :: ebφ(u′) := (e
i
2
(u−u′) − e−

i
2
(u−u′))

abβ2

2 : eaφ(u)+bφ(u′) :, (26)

We can rewrite these products, extracting the singular parts:

ξ(u)ξ(u′) =− iβ2

(iu − iu′)
+

∞∑

k=1

ck(u)(iu − iu′)k, (27)

: eaφ(u) :: ebφ(u′) : = (iu − iu′)
abβ2

2 (: e(a+b)φ(u) : +

∞∑

k=1

dk(u)(iu − iu′)k), (28)

where ck(u) and dk(u) are operator-valued functions of u.
The L

(q)(λ) operator can be expressed in the following way:

L
(q) = e−iπPhα0 lim

N→∞

N∏

m=1

τ (q)
m , τ (q)

m = P exp

∫ xm

xm−1

duK(u), (29)

K(u) ≡ : e2φ(u) : eα0
+ ξ(u) : e−φ(u) : eα.

Here we have divided the interval [0, 2π] into small intervals [xm, xm+1] with
xm+1 − xm = ∆ = 2π/N . Studying the behaviour of the first two iterations
when β2 → 0:

τ (q)
m = 1 +

∫ xm

xm−1

duK(u) +

∫ xm

xm−1

duK(u)

∫ u

xm−1

du′K(u′) + O(∆2). (30)

we conclude that the second iteration can give contribution to the first one. To
see this let’s consider the expression that comes from the second iteration:

−
∫ xm

xm−1

duξ(u)

∫ u

xm−1

du′ξ(u′) : e−φ(u) :: e−φ(u′) : e2
α. (31)

Now, using the above operator products and seeking the terms of order ∆1+β2

(only those can give us the first iteration terms in β2 → 0 limit) one obtains
that their contribution is:

iβ2

∫ xm

xm−1

du

∫ u

xm−1

du′(iu− iu′)
β2

2
−1 : e−2φ(u) : e2

α (32)

= 2

∫ xm

xm−1

du : e−2φ(u) : (iu − ixm−1)
β2

2 e2
α.

Considering this in the classical limit we recognize the familiar terms from L:

τ (1)
m = 1 +

∫ xm

xm−1

du
(
ξ(u)e−φ(u)eα + e2φ(u)eα0

+ e−2φ(u)2e2
α

)
+ O(∆2). (33)
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Collecting all τ
(1)
m one obtains the desired result: L

(1) = L. Using information

about representations one can also get: L
(1)
s (λ) =

∑[s/2]
k=0 Ls−2k(λ), where k runs

over integer numbers.
Using the properties of quantum R-matrix [3] one obtains that R∆(L(q)) =

∆op(L(q))R, where ∆ and ∆op are coproduct and opposite coproduct of ôspq(1|2)

[14] correspondingly. Factorizing ∆(L(q)) and ∆op(L(q)) , according to the prop-
erties of vertex operators and P-exponent, we get the so called RTT-relation
[3],[4]:

Rss′(λµ−1)
(
L

(q)
s (λ) ⊗ I

)(
I⊗ L

(q)
s′ (µ)

)
(34)

= (I ⊗ L
(q)
s′ (µ)

)(
L

(q)
s (λ) ⊗ I

)
Rss′(λµ−1),

where Rss′ is the trigonometric solution of the corresponding Yang-Baxter equa-
tion [16] which acts in the space πs(λ) ⊗ πs′(µ).

Let’s define now the “transfer matrices” which are the quantum analogues of

the traces of monodromy matrices: t
(q)
s (λ) = strπs(λ)(e−iπphα0 L

(q)
s ). According

to the RTT-relation one obtains:

[t(q)
s (λ), t

(q)
s′ (µ)] = 0. (35)

Considering the first nontrivial representation (s=1) it is easy to find the ex-

pression for t
(q)
1 (λ) ≡ t

(q)(λ): t
(q)(λ) = 1 − 2 cos(2πiP ) +

∑∞
n=1 λ2nQn, where

Qn are nonlocal conservation laws, which (with the use of (35)) are mutually
commuting: [Qn, Qm] = 0. Following [1],[2] we expect also that t

(q)(λ) gener-
ates local IM as in the classical case. Using (35) again one obtains, expanding

log(t(q)(λ)): [Qn, I
(q)
2k−1] = 0, [I

(q)
2l−1, I

(q)
2k−1] = 0. The first few orders of expansion

in λ2 of t
(q)
s (λ) results in the following fusion relation :

t
(q)
s (q1/4λ)t(q)

s (q−1/4λ) = t
(q)
s+1(q

1

2β2 λ)t
(q)
s−1(q

1

2β2 λ) + t
(q)
s (λ). (36)

This result also reminds the fusion relation for (A
(2)
2 )q case [2].

5 Discussion

Returning to the quantum Miura transformation (14) it should be noted that
one can choose another version:

−β2T (u) =: φ′2(u) : −(1 − β2)φ′′(u) +
1

2
: ξξ′(u) : +

εβ2

16
. (37)

The reason why we introduce this one is the following: we have two candi-
dates to perturb the model without spoiling the conservation laws, the so-called
“integrable perturbations” [19]:

V1 =

∫
dθ

∫ 2π

0

due−Φ, V2 =

∫
dθ

∫ 2π

0

duθe2Φ. (38)
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Operator V1 is screening for the deformation (14), the dimension of other one
is h1,5(ĉ) − 1/2. But one should be able also to consider V2 as screening – that
is one should use (37). In this case the dimension of other one is 1/2 + h1,2(c)
where c = 13 − 6(β2 + 1/β2) is the central charge of Virasoro algebra, gener-
ated by (37) without fermion term. When one of these operators is screening,
another one is chosen as a perturbation, so one can relate the obtained model
with ôsp(1|2) supersymmetric Toda field theory [18] with the corresponding La-
grangian: L = Du,θΦDū,θ̄Φ − e−Φ − θθ̄e2Φ.

Really, when β2 is rational the obtained model can be treated as supercon-
formal minimal model, perturbed by h1,5(ĉ) − 1/2 dimensional operator, or as
minimal model, perturbed by 1/2 + h1,2(c) dimensional operator. We conjec-
ture, that the same one could obtain from the quantum group reduction of the
theory with the mentioned Lagrangian.

The solution of the functional system of equations (36) due to the conjec-

ture of [1] determines the whole set of eigenvalues of t
(q)
s (λ) in the model. In

the case when q is root of unity, this system should become a closed system
of equations (quantum group truncation). Also, due to the results of [1] and
[2] one can suppose that these functional equations can be transformed to the
so-called Thermodynamic Bethe Ansatz equations [7], giving the description of
the “massless S-matrix” theory associated with minimal superconformal field
theories.
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